A cikk szerzője:

Dr. habil Dr. Majorosné Lublóy Éva Eszter egyetemi docens
BME

Dr. Major Zoltán egyetemi adjunktus
Széchenyi István Egyetem, Győr

Alagútfalazatok termikus vizsgálata (4. rész) – Tartószerkezeti elemzés

Cikkünk első három részében [1–3] sorra vettük azokat az elméleti és gyakorlati ismereteket, amelyek birtokában az alagútfalazatok felmelegedésének számítása elvégezhető. Ezekre az ismeretekre támaszkodva cikkünk negyedik részében a mindennapi gyakorlatban a tartószerkezeti elemzés elvégzésére alkalmazható, egyszerű lehetőségekkel foglalkozunk. Cikkünkben bemutatjuk a hatások és ellenállások számításának módját, különös tekintettel a gátolt alakváltozások okozta kényszerigénybevételek meghatározására.

A tübbing ellenőrzését követően az elemek csavarkapcsolatának ellenőrzését is el kell végezni. Ezek a kapcsolatok nyomatékbíróan vannak kialakítva kétsoros csavarelrendezés mellett. Az alkalmazott számítási modell a nyomaték irányától függően mindig csak az egyik csavarsort veszi figyelembe, ahogy az a 9. és 10. ábrán is látható. A modell alapján a nyomaték hatására a fuga megnyílását kell figyelembe venni, ami miatt a nyomóerő nem a teljes felületen adódik majd át, csupán annak a csökkentett méretű, b szélességű felületén. Ezt a b szélességet dr. Széchy Károly könyve [4] szerint 6 cm-re lehet felvenni. Ha a nyomaték a felső szélső szálban okoz nyomást, akkor a 9. ábra szerinti elrendezés alapján lehet meghatározni a csavarsorban ébredő T2 húzóerő értékét, ami teherbírási határállapotban (szobahőmérsékleten) a 13. képlet alapján számítható, míg tűzhatás során a 14. képlet alapján. A b szélességen megoszló nyomóerő külpontossága a 12. képlet szerint határozható meg.


ahol:
T2: a csavarsorra ható húzóerő teherbírási határállapotban,
T2,θ: a csavarsorra ható húzóerő tűzhatás során, θ hőmérséklet esetén,
M2: a keresztmetszetre ható hajlítónyomaték teherbírási határ­álla­pot­ban,
M2,θ: a keresztmetszetre ható hajlítónyomaték tűzhatás során, θ hőmérséklet esetén,
N2: a keresztmetszetre ható nyomóerő teherbírási határállapotban,
N2,θ: a keresztmetszetre ható nyomóerő tűzhatás során, θ hőmérséklet esetén. Geometriai mennyiségek: a 9. ábra szerint.
Ha a nyomaték az alsó szélső szálban okoz nyomást, akkor a 10. ábra szerinti elrendezés alapján lehet meghatározni a csavarsorban ébredő T1 húzóerő értékét, ami teherbírási határállapotban (szobahőmérsékleten) a 15. képlet alapján számítható, míg tűzhatás során a 16. képlet alapján. A b szélességen megoszló nyomóerő külpontossága a 12. képlet szerint határozható meg.

ahol:
T1: a csavarsorra ható húzóerő teherbírási határállapotban,
T1,θ: a csavarsorra ható húzóerő tűzhatás során, θ hőmérséklet esetén,
M1: a keresztmetszetre ható hajlítónyomaték teherbírási határ­állapotban,
M1,θ: a keresztmetszetre ható hajlítónyomaték tűzhatás során, θ hőmérséklet esetén,
N1: a keresztmetszetre ható nyomóerő teherbírási határállapotban,
N1,θ: a keresztmetszetre ható nyomóerő tűzhatás során, θ hőmérséklet esetén. Geometriai mennyiségek: a 10. ábra szerint.

A cikk folytatódik, lapozás:« Előző12345678Következő »

Irodalomjegyzék

  • [1] Dr. Majorosné, dr. L. É. E., Dr. Major, Z. Alagútfalazatok termikus vizsgálata (1. rész) – Elméleti alapok. Sínek Világa 2023;3:14-23.
  • [2] Dr. Majorosné, dr. L. É. E., Dr. Major, Z. Alagútfalazatok termikus vizsgálata (2. rész) – Gyakorlati ismeretek. Sínek Világa 2023;5:2-8.
  • [3] Dr. Majorosné, dr. L. É. E., Dr. Major, Z. Alagútfalazatok termikus vizsgálata (3. rész) – Passzív tűzvédelem. Sínek Világa 2023;6:2-8.
  • [4] Dr. Széchy Károly. Alagútépítéstan. Budapest: Tankönyvkiadó; 1961.
  • [5] Petrasovits G, Fazekas Gy, Kovácsházy F. Városi földalatti műtárgyak tervezése és kivitelezése. Budapest: Akadémia Kiadó; 1992.
  • [6] MSZ EN 1993-1-2:2013 Eurocode 3: Acélszerkezetek tervezése, 1–2. rész – Általános szabályok. Szerkezetek tervezése tűzhatásra. Budapest: MSZT; 2013.
  • [7] MSZ EN 1992-1-2:2013 Eurocode 2: Betonszerkezetek tervezése, 1-2. rész – Általános szabályok. Szerkezetek tervezése tűzhatásra. Budapest: MSZT; 2013.
  • [8] Dr. Balázs L. György, et al. Szerkezetek tervezése tűzteherre az MSZ EN szerint. Budapest: PI Innovációs Kft., 2010. ISBN: 978-615-5093-02-9
  • [9] Lublóy É, Major Z, Szép J, Hlavicka V, Biró A. Méretezés tűzteherre az Eurocode szerint. Vasbeton, acél-, fa-, falazott és öszvérszerkezetek tervezése. Budapest: TERC Kereskedelmi és Szolgáltató Kft., 2023.
  • [10] MSZ EN 1991-1-2:2005 Eurocode 1: A tartószerkezeteket érő hatások, 1-2. rész – Általános hatások. A tűznek kitett szerkezeteket érő hatások. Budapest: MSZT; 2005.
  • [11] ITA Report n°22 – Guidelines for the Design of Segmental Tunnel Linings. ISBN 978-2-9701242-1-4, Avignon, 2019., https://about.ita-aites.org/files/WG2_-ITA-REPORT-DesignSegment.pdf, letöltve: 2024.01.05.
  • [12] Csanády D, Fenyvesi O, Lublóy É, Megyeri T. Alagúttüzek hatása az alagútfalazat és kőzetkörnyezet teherbírására. Építőanyag: Journal Of Silicate Based And Composite Materials 2018;70(2):54-61. http://doi.org/10.14382/epitoanyag-jsbcm.2018.11
  • [13] Csanády D, Fenyvesi O, Megyeri T. Alagúttüzek hatása az alagútfalazat és kőzetkörnyezet teherbírására, 2. rész – Vágatstatikai számítás. Építőanyag: Journal Of Silicate Based And Composite Materials 2020;72(3):99-105. http://doi.org/10.14382/epitoanyag-jsbcm.2020.16
  • [14] Maraveas C, Wang YC, Swailes T. Thermal and mechanical properties of 19th century fireproof flooring systems at elevated temperatures. Construction and Building Materials 2013;48:248-264. DOI: 10.1016/j.conbuildmat.2013.06.084.
  • [15] Adolf Frischherz, Wilhelm Dax, Klaus Gundelfinger, Werner Häffner, Helmut Itschner, Günter Kotsch, Martin Staniczek. Fémtechnológiai táblázatok. Budapest: B+V Lap- és Könyvkiadó Kft.; 2013.
  • [16] Chrysanthos M, Yong W, Thomas S. (2016). Moment capacity of cast iron beams exposed to fire. Structures & Buildings. 10.1680/jstbu.15.00120.
  • [17] URL: https://amt.sze.hu/images/am/2012_2013_2_felev/MSc_nappali/Rugalmassagtan/Rugtan-3-4-MSc-B5.pdf
  • [18] Reszka P, Steinhaus T, Biteau H, Carvel RO, Rein G, Torero JL. A Study of Fire Durability for a Road Tunnel Comparing CFD and Simple Analytical Models. EUROTUN 2007 Computational Methods in Tunnelling, Viena, August 2007. https://era.ed.ac.uk/bitstream/handle/1842/1892/Reszka_TunnelFire_EUROTUN07.pdf?isAllowed=y&sequence=1
  • [19] Ádány S, Dulácska E, Dunai L, Fernezelyi S, Horváth L, Kövesdi B. Acélszerkezetek – Tervezés az Eurocode alapján. 2. bővített kiadás. Budapest: Artifex Kiadó Kft.; 2016.
  • [20] Fehérvári S. Betonösszetevők hatása az alagútfalazatok hőtűrésére. PhD-értekezés. Budapest: 2009.
  • [21] Kaliszky S, Kurutzné Kovács M, Szilágyi Gy. Szilárdságtan. Budapest: Nemzeti Tankönyvkiadó; 2000.
A teljes cikket megtalálja a folyóirat 2024 / 1. számában.
Ha szeretne rendszeresen hozzájutni a legfrisebb számokhoz, fizessen elő a folyóiratra.
A hozzászólások megtekintéséhez vagy új hozzászólás írásához be kell jelentkeznie!
Sínek Világa A Magyar Államvasútak Zrt. pálya és hídszakmai folyóirata
http://www.sinekvilaga.hu | ©